skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cho, Joohyun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 1, 2026
  2. In this work, we develop a two time-scale deep learning approach for beamforming and phase shift (BF-PS) design in time-varying RIS-aided networks. In contrast to most existing works that assume perfect CSI for BF-PS design, we take into account the cost of channel estimation and utilize Long Short-Term Memory (LSTM) networks to design BF-PS from limited samples of estimated channel CSI. An LSTM channel extrapolator is designed first to generate high resolution estimates of the cascaded BS-RIS-user channel from sampled signals acquired at a slow time scale. Subsequently, the outputs of the channel extrapolator are fed into an LSTM-based two stage neural network for the joint design of BF-PS at a fast time scale of per coherence time. To address the critical issue that training overhead increases linearly with the number of RIS elements, we consider various pilot structures and sampling patterns in time and space to evaluate the efficiency and sum-rate performance of the proposed two time-scale design. Our results show that the proposed two time-scale design can achieve good spectral efficiency when taking into account the pilot overhead required for training. The proposed design also outperforms a direct BF-PS design that does not employ a channel extrapolator. These demonstrate the feasibility of applying RIS in time-varying channels with reasonable pilot overhead. 
    more » « less
  3. In this work, we propose a two-stage multi-agent deep deterministic policy gradient (TS-MADDPG) algorithm for communication-free, multi-agent reinforcement learning (MARL) under partial states and observations. In the first stage, we train prototype actor-critic networks using only partial states at actors. In the second stage, we incorporate partial observations resulting from prototype actions as side information at actors to enhance actor-critic training. This side information is useful to infer the unobserved states and hence, can help reduce the performance gap between a network with fully observable states and a partially observable one. Using a case study of building energy control in the power distribution network, we successfully demonstrate that the proposed TS-MADDPG can greatly improve the performance of single-stage MADDPG algorithms that use partial states only. This is the first work that utilizes partial local voltage measurements as observations to improve the MARL performance for a distributed power network. 
    more » « less
  4. null (Ed.)